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Abstract

Inmachine learning (ML) pipelines, preprocessing tasks—such
as loading, decoding, and applying transformations—require
substantial compute and power resources. With the slow-
down of Moore’s Law, the benefits of traditional hardware
scaling are diminishing, making the optimization of these
preprocessing tasks increasingly critical for overall pipeline
efficiency. While previous works have introduced various
software optimizations to address the preprocessing bot-
tleneck, less attention has been given to optimizing these
tasks in relation to the underlying CPU architecture’s effi-
ciency. This is a missed opportunity, as the performance of
preprocessing is closely tied to the CPU’s microarchitecture,
memory hierarchy, and instruction pipeline efficiency.
Our work addresses this gap by introducing Lotus, an

open-source profiling tool specifically designed for the pre-
processing stage of ML pipelines. Lotus supports future
optimizations across the hardware-software stack, by pro-
viding insights that allow practitioners to evaluate the lim-
itations of their CPU architecture in the context of prepro-
cessing tasks, and assess the efficiency of their preprocessing
pipelines under different configurations. The tool is available
at https://github.com/rajveerb/lotus.

1 Introduction

Preprocessing is a critical step in machine learning (ML)
pipelines, where raw input data is ingested and transformed
into a format suitable for ML models. This step typically
involves a chain of complex operations, such as loading, de-
coding, and applying transformations, which can demand
substantial compute resources. For example, preprocessing
can consume up to 65% of the epoch time in tasks such as
image classification, object detection, and audio classifica-
tion [38], and CPU power consumption during preprocessing
can account for over 20% of the total power usage in certain
ML workloads [51].
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At the same time, efficient preprocessing is crucial for
ML training jobs, which require low latency (100 𝜇𝑠 - 1
𝑚𝑠) and high throughput (10 𝐺𝐵/𝑠) for per-batch gener-
ation [50]. Inefficiencies in CPU-based preprocessing can
cause low utilization of expensive accelerators, especially in
systems with an imbalance between CPU and accelerator
resources [12, 33, 38, 40, 41, 46].
Various optimizations from both academia and industry

have been proposed to enhance preprocessing performance.
These include parallelizing I/O and compute within and
across batches [30, 39, 44], offloading preprocessing tasks to
accelerators (DALI [9], TrainBox [42]), data duplication [16],
caching optimizations [12, 22, 27, 31, 38, 44], dataset storage
improvements [10, 31], disaggregated preprocessing across
nodes [12, 22, 23, 47, 49, 50], and co-locating ML jobs for
efficient caching and scheduling in clusters [32, 48, 49].
The range of these optimizations highlights the impor-

tance of the preprocessing stage in ML training pipelines.
However, it has been consistently shown that significant
efficiency gains can be achieved through better hardware
design. Both cloud providers [2, 5, 8] and hardware ven-
dors offer customizable infrastructure configurations for
specific workloads, including options for different types of
CPUs, GPUs/accelerators, and memory. Workload-specific
hardware designs, such as new accelerators (e.g., TPUs [28],
IPUs [7]) or workload-specialized CPUs (e.g., AWS Gravi-
ton [4], Microsoft’s Cobalt 100 [36], Google’s Axion [34]),
have demonstrated both performance and system efficiency
improvements. Additionally, vendors [15, 19, 25, 26, 37] offer
AI/ML servers (e.g., NVIDIA HGX H100 and H200, AMD
MI300X, Intel Gaudi2) with various SKUs for CPU, memory,
SSD, and NIC configurations. Evaluating the limitations of
the CPU SKU in AI/ML servers is crucial, as it directly im-
pacts CPU-based preprocessing performance in ML training
clusters.

A critical capability for designing or configuringworkload-
specific hardware is the ability to finely characterize work-
load resource requirements and identify performance and
scalability bottlenecks within the existing infrastructure
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stack. However, our research reveals a lack of effective profil-
ing tools that can adequately characterize the performance
of preprocessing pipelines at the CPU architectural level.
In this paper, we describe Lotus, presented at IISWC

2024 [13], an open-source profiling tool specifically devel-
oped for the preprocessing stage of ML pipelines. Lotus
combines lightweight instrumentation and tracing of ML
preprocessing workloads with a novel method for approxi-
mating the mapping of hardware events to individual pre-
processing operations. This provides detailed insights into
the performance characteristics and microarchitectural bot-
tlenecks of preprocessing workloads. These insights enable
infrastructure designers to evaluate the limitations of their
CPU architecture and the efficiency of their preprocessing
pipelines across different ML training job configurations.

We present an illustrative example that demonstrates the
utility of these insights by applying Lotus to a representative
ML workload. We show that Lotus can capture fine-grained
preprocessing timing, and get a CPU architectural-level per-
formance view of their execution, which helps reveal a clear
shift in the workload’s performance bottlenecks under differ-
ent job configurations. Our full paper [13] includes a detailed
explanation of the design of Lotus, as well as an extended
comparison of its capabilities, overheads, and ease of use
with respect to alternative profilers including Scalene [14],
py-spy [21], austin [45] and the PyTorch profiler [11].

2 Lotus Design

Challenges. The design of Lotus addresses two main chal-
lenges in existing solutions. First, there is a disconnect be-
tween the performance of high-level Python functions and
low-level hardware metrics (such as L1 cache misses) that are
collected via performance counters. Existing hardware profil-
ers, such as Intel VTune [6] and AMD uProf [3], collect CPU
cache and microarchitecture performance data for C/C++
functions but cannot capture stack frames of machine learn-
ing pipeline code written in Python. Additionally, Python
profilers that capture the call stack often fail to label prepro-
cessing functions correctly, forcing users to investigate the
source code manually to recreate the stack trace.

Second, capturing fine-grained batch-level preprocessing
timing data with low overhead is challenging. Sampling-
based Python profilers such as Scalene [14], py-spy [21], and
austin [45] are constrained by their sampling rates, making it
challenging to capture the duration of individual transforma-
tion operations that may only take hundreds of microseconds
to a few milliseconds without incurring significant overhead.
Moreover, the asynchronous data flow used in many prepro-
cessing frameworks, where worker processes execute the
actual preprocessing operations while the main process coor-
dinates, complicates the measurement of elapsed times. Re-
cent work on optimizing preprocessing pipelines [30, 39, 44]
rely on instrumentation to capture aggregated elapsed time

across many batches, but does not capture fine-grained per-
batch statistics or data flow dependencies.
To address these limitations, we make two key observa-

tions. First, ML preprocessing pipelines are often declara-
tively defined, providing hooks for fine-grained instrumenta-
tionwhile ensuring generalizability across different pipelines
and frameworks [33, 39, 43]. Second, once such fine-grained
instrumentation data is available, it can be leveraged to bet-
ter attribute low-level hardware performance counters mea-
sured by the hardware profilers to the corresponding high-
level preprocessing functions.
Design Overview. We leverage these insights to build
Lotus – a new profiling tool for ML preprocessing pipelines
declared using PyTorch’s DataLoader [43].

Lotus comprises two components – LotusTrace, and
LotusMap – that enable capturing preprocessing events and
hardware analysis for preprocessing operations, respectively.
The effectiveness of LotusTrace is due to the understand-
ing of the PyTorch DataLoader’s asynchronous data flow,
which allows us to add logging instrumentation at the points
that matter the most in capturing this flow (§ III-B [13]). As
a result, LotusTrace neither performs additional computa-
tion nor maintains unnecessary tracer state in memory, thus
avoiding CPU and memory overheads. On the other hand,
LotusMap introduces a novel method that approximates the
mapping of Python functions to their C/C++ counterparts. To
obtain a high-quality mapping, our technique carefully buck-
ets the C/C++ functions, filters incorrect C/C++ functions,
and captures short-lived C/C++ functions (§ IV-B [13]).

Together, LotusTrace and LotusMap allow a practitioner
to capture fine-grained batch-level preprocessing timing
data, map them to the responsible C/C++ functions, and use
their hardware performance counters to get a CPU architec-
tural level performance view of the preprocessing operations.
Lotus thus empowers users to reason about the performance
of preprocessing pipelines at the hardware level, bridging a
significant gap in our understanding.

3 Experiment Setup

We demonstrate Lotus’ profiling capabilities using the Im-
age Classification task as our primary example. Our full
paper [13] provides additional studies using representative
training tasks from the MLPerf training benchmark [35].
Image Classification (IC). This pipeline classifies an im-
age to an object. We use MLPerf’s reference PyTorch im-
plementation [29, 35], the ImageNet dataset [18], and the
ResNet18 [24] model. The pipeline contains the following
preprocessing steps: 1. Loader : Loading the image from disk
to memory and decoding it from compressed formats such
as JPEG. 2. RandomResizedCrop (RRC): Adjusting the image
to the desired size and then crop. 3. RandomHorizontalFlip
(RHF): Obtaining mirror image. 4. ToTensor (TT): Convert-
ing images to tensors. 5. Normalization: Normalizing to zero
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Figure 1. Combining LotusTrace and LotusMap enables analysis of performance of preprocessing operations on hardware.

mean and unit variance. 6. Collation(C(𝑘)): Collating tensors
into a batch size of 𝑘 data elements.

Specifically, our experiment investigates the impact of the
number of data loader workers on the image classification
pipeline’s performance. We use a fixed batch size of 1024
and 4 GPUs and vary the number of data loader workers
from 8 to 28 in increments of 4. Exceeding 28 workers leads
to OOM issues on our 32-core machine. The experiments
run for 1 epoch, processing the same amount of training
data across all configurations. As a result, the variability in
preprocessing time is attributed to the number of dataloader
workers. In our setup, preprocessing operations (including
reading and decoding images) are CPU-based, whereas for-
ward and backward passes on the deep learning model are
GPU-based. Data collection involves using LotusTrace for
preprocessing operation information and LotusMap with
Intel VTune for hardware performance counter data.
Environment. The experiments are conducted on a Cloud-
Lab c4130 node [20], a dual-socket 3.2GHz E5-2667 Intel
Xeon CPU, with 128 GiB of RAM, four NVIDIA V100 GPUs,
each with 16 GiB memory and NVLink support, and a remote
dataset mounted to a single node [17] as a ZFS zvol exported
via iSCSI [1]. The software environment includes Python
3.10, PyTorch 2.0.1 with Torchvision 0.15, image processing
using libjpeg-9e, GPU acceleration through CUDA 11.8 and
cuDNN 8.7, and Ubuntu 20.04 (5.4.0-139-generic) for OS.

4 Observations from Hardware

Performance

Figure 1 summarizes the profiling data obtained by Lotus.
Overall, Lotus combines information collected via LotusTrace
and LotusMap to link high-level Python functions with low-
level hardware performance counters.

In Figure 1(a), we observe a ~50% drop in E2E job elapsed
time as the number of dataloaders increase from 8 to 28.
Beyond 20 dataloaders, there is a diminishing return in per-
formance gain. LotusTrace reveals that total CPU seconds
increased by 53% from 8 to 28 data loaders, with a steady rise
in each preprocessing operation’s CPU time (Figure 1(b)).

Since, VTune’s profile collects hardware performance coun-
ters for C/C++ functions (over 300+) called during the run,
it can not be directly used to explain the rise of CPU time
for each preprocessing operation on the hardware level. We
use LotusMap to obtain a mapping (Table I [13]) of C/C++
functions to Python preprocessing operations. This map-
ping allows us to filter out irrelevant C/C++ functions (Fig-
ure 1(c,d)). By combining the mapping and the elapsed time
measured by LotusTrace, we can attribute hardware perfor-
mance counters from C/C++ functions to the corresponding
Python preprocessing operations, enabling reporting of hard-
ware metrics per preprocessing operation (Figure 1(e - h)), a
capability not previously available.
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Figure 1(e) shows that CPU time increases steadily for all
preprocessing operations, in line with our observation from
LotusTrace. Figure 1(f) and Figure 1(g) further explain this
increase by revealing a steep undersupply of uOperations
to the backend as data loaders increase, causing low con-
tention for cores in the backend of the microarchitecture.
With the workload being front-end bound, the pressure on
stalls caused by loads serviced by Local DRAM decreases
(Figure 1(h)). This implies that in certain CPU SKUs, increas-
ing the number of data loader workers does not translate to
a decrease in E2E job elapsed time, as the CPU time increases
due to the contention for hardware resources.
Additionally, this example underscores the importance

of LotusMap’s mapping quality. For instance, even though
ToTensor is a short-lived function, it occurs frequently.With-
out capturing its mappings using techniques described in §
IV-B [13], we wouldn’t be able to account for its significant
contribution to the trends observed in Figure 1(f,g,h).
Takeaway: Selecting a CPU SKU with the right number of
cores is not straightforward, as adding cores may result in di-
minishing returns for reducing end-to-end job elapsed time,
while increasing overall CPU time. Lotus helps identify hard-
ware resource contention under various configurations.

5 Conclusion

Lotus is an open-source profiling tool1 for the preprocessing
stage in ML pipelines which enables infrastructure designers
to thoroughly evaluate hardware infrastructure under nu-
merous configurations of the ML training job. Using Lotus
requires small code changes, described in the system doc-
umentation, but these can be justified given the additional
insights into the preprocessing pipeline execution. For in-
stance, Lotus makes it possible to compare the efficiency
of different CPU SKU choices for deploying the ML prepro-
cessing stages, to identify CPU bottlenecks that could be
addressed with new hardware designs, as well as to guide
software-level optimizations. Future enhancements could
integrate Lotus with existing accelerator profilers targeting
the ML training execution, for an end-to-end view of the ML
training pipeline.
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